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Note 

On the Evaluation of Double-Folding, Heavy-Ion Interaction 
Potentials by Fourier Transformation Methods 

It has recently been shown [l] that folding potentials are quite successful in 
describing heavy-ion scattering data. The folding model requires taking the three- 
dimensional folding product between the nuclear density of the target and an effective 
nucleon-nucleon interaction. This product is then to be folded into the projectile 
density. The resulting six-dimensional folding integral is most conveniently evaluated 
in Fourier space. In [ 1 ] spherical nuclear density distributions are generated 
numerically and subsequently their Fourier-Bessel transforms are also calculated 
numerically. These steps can be simplified if the density is represented by a 
leptodermous distribution for which the Fourier-Bessel transform is an algebraic 
expression of elementary functions. 

The folding model with fixed spherical nuclear densities is physically only 
reasonable if target and projectile densities overlap at most. with their exponential 
tails. It is therefore only the tail of the distribution which really matters in the folding 
model. The actual density may then be substituted by a leptodermous function whose 
radius and diffuseness parameters were fitted to reproduce the tail of the density. 
Compare [2, 31 for an accurate determination of the equivalent sharp radius R (in 
these papers called the dms radius) and the Helm-model skin thickness I, of a given 
distribution. For light N = Z nuclei the density parameters can be deduced from 
experimental proton densities [2] (not charge densities!). Alternative methods to 
obtain experimental mass distributions are discussed in [ 11. 

Leptodermous distributions may be represented either by a Woods-Saxon shape 
p&l + exp((r - R,,,)/a,})-’ with the parameters p,,, R,,,, and uF or the folding 
product &,O(r - R) * Y with 

o= 1, inside the nucleus, r<R, 

= 0, outside the nucleus, r > R, 

and 

Y = (47&r)- e-r’o, 

The radius parameters are related by 

R = [R ,,2(R:,z + n”ak)] “3 + @(e-R’aF) z R 1,2[ 1 + (7?/3)(u,/R l,,)z] 
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and the various thickness parameters can all be expressed in terms of Myers’ 
diffuseness parameter b [4] 

a2 = b2/2, ai = 3b2/n2, tf, = 6.45b2. 

If the density distribution is represented by Woods-Saxon shapes, the potential 

3 
‘tr)=PP* ‘MJY*PT=PP* C viyi *PT 

i 1 i=l 

can be obtained by Fourier techniques [5], which yield 

with the Fourier transforms [6] 

F[&] = 3A,5 1 
xaraqctghna,qsinqR,-qR,cosqR, 

RI @,laJ2 + x2 aiq* sinh za,q 
71 

co 
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similarly F[p,], and 

F[Y,] = (1 + a;qy. 

Here a, and R, are the projectile a, and R ,,2 values. The parameters of the M3Y 
effective interaction [l] are 

v, = 1571 MeV fm3, a, = 0.25 fm, 

v2 = -1716 MeV fm3, a, = 0.40 fm, 

v3 = -262 MeV fm3, a3 =O.O fm. 

Note that the integrand in (1) is oscillating with wave lengths n/R,, x/R., n/r, 
which requires a rather small step size in the numerical evaluation of the integral, in 
particular for large r. In this case however, the Fermi functions are sometimes 
approximated by the first term of the series 

valid for r > R. Substitution of 

(R--T)la] =poeR” (1 J:i2)2 e RIO 
Fhe = ‘A g (R2/a2 + n’)(l + a2q2)2 
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into (1) yields by contour integration [6] 

944, al a2 eRdal @ 21~ 
--- 

V(r) rymz 2nr R, R2 (R,/u,)’ +n2 (R2/a2)2 +n2 i% ’ ’ 
+ u.B.(r) (3) 

with 

B,(r)= 1-d ( a;)-2 (4-aY [k+ 1 &2 + 1e&] ccr’* 
I 2 1 I 

+ (I -$)e2(4-ai2)-1 [&+ 1 -4,ya2 + 1 F,22,ui] e-“‘2 

+2 (1 -$)-2(1 -g)-2a3-r:ai. * 

1 

2 

I 

Then B, becomes indefinite if two a parameters are equal. Its value is then determined 
by De 1’Hospital’s rule. 

In evaluating the folding product expansion (2) was implicitely used also for r < R, 
where it is not convergent. Therefore (3) is only asymptotically valid. It is seen in 
Figs. 1 and 2 that it is a rather poor approximation for (1) for all r values of interest. 
It can be shown that keeping higher order terms in (2) even worsens the approx- 
imation. 
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FIG. 1. Heavy-ion interaction potential (nuclear part only) for the system 40Ar + ’ “Pd. The nuclear 
density was represented by a Woods-Saxon shape (I) and a folding product (II). The asymptotic forms 
(3) and (4) are shown by (---). A smooth extrapolation (...) of (4) towards smaller radii is to be used 
for adiabatic collisions. The contact point of the equivalent sharp surfaces is indicated by C on the 
abscissa. 
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FIG. 2. Same as Fig. 1 for the system “C t ‘*C. 

If the densities are represented by the folding product p,, 0 * Y, integral (I) can be 
evaluated directly by contour integration [5] for r > R, + R, 

X (1 + atq*)-‘(1 + a~q*))‘(l + a;,*)-’ q* dq 

=A,A, (4) 

with 

C,(r)= (1 -$)-‘(1 -$)-‘e-r/al jcl ($sinh?-:cosh?) 

Note that V(r), defined in (I), is not an analytic function of r. Therefore (4) should 
not be continued analytically to r < R, + R,. The figures show that it deviates 
drastically from (1) in the interior. If any two of the three parameters a,, a,, ai 
coincide, C,(r) has to be determined by De I’Hospital’s rule. The parameters Aj, Rj, 
and aj, j = 1,2, in (4) are the mass numbers, the equivalent sharp radii, and Yukawa 
diffuseness parameters a, respectively, of target and projectile. Expression (4) has 
also been derived in [9]. Various approximations to (4) are discussed in these papers. 
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In Figs. 1 and 2 the heavy-ion potentials for the systems ’ “Pd + 40Ar and 
‘*C + i2C, respectively, have been calculated with Woods-Saxon shapes for the 
density distribution and with folded Yukawa shapes. For numerical purposes integral 
(1) was converted into a discrete Fourier transform by the substitution q + x = 
2rq/n-- 2n - 1 (71 

f 00 0 

h(q) sin qr dr = 2 f (-)“/I 
n=l 

2 {x+ 2% + 1) cos%dx 
2 

with 

The discrete Fourier integral was evaluated by a 96-point Gauss-Legendre formula. 
It is seen in the figures that the difference between the use of Woods-Saxon shapes 
and folding products is only noticeable in the tail of the potential. For comparison 
asymptotic expressions (3) and (4) are also shown in the figures. 

A standard parameter set for the equivalent sharp radius R and diffuseness b of the 
densities was used [B] 

R = (1.28/i “3 - 0.76 + 0.8A -li3) fm, 

b= l.Ofm. 

To avoid numerical complications in (3) and (4) the projectile diffuseness was taken 
to be 1% different from the target diffuseness. 

In the figures, (...) represents a smooth parabolic extrapolation of (4) for r < 
R i + R 2. Its value for r = 0 was taken to be the fusion reaction Q-value minus the 
difference of the Coulomb self-energies of the compound nucleus and the two nuclei 
in the entrance channel. It is interesting that folding product (1) leads to an even 
stronger attraction in the interior although the underlying frozen-density model 
implies a doubling of the density for r = 0. Realistically this should give rise to a 
strong repulsion if the M3Y potential were prima facie a G matrix including a mock- 
up for exchange and kinetic energy contributions as implied by (1). This is obviously 
not the case so that the interior may be better described by a smooth interpolation 
like (...) in the figures. 

Numerically folding potentials derived from densities with standard diffuseness b 
obey with fairly high accuracy the scaling law 

V(R,+R,+s)/V(R,+R,)=f(slb), s > 0, 

where R, and R, are equivalent sharp radii and f(x) is a universal function. In 
optical-model calculations this may be used to reduce the computing time by a spline 
representation of S(x). 
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